
The NeXT computer offers complete preemptive multi-tasking along with a graphical
user interface that is conducive to having many programs running at the same time. 
Additionally, it is very easy to create custom applications.    It just seems natural to
want to access the features of Mesa from a custom application.    The Mesa
Application Program Interface, Mesa API, allows a programmer to access the features
of Mesa to transfer data or make Mesa perform certain tasks (like saving a
worksheet, etc.)    This document is a brief description of the API.    The API is
changing and growing.    If you have suggestions that would make using the API
easier or better for you, please forward them to dpp@athena.com.

To access the API, you must include the MesaAPI.h header file in Objective-C program
that accesses Mesa.    Additionally, you must link the MesaAPI.o file into your project.   
The API contains two classes: MesaAPI and MesaListen.    The MesaAPI class allows you
to manipulate information in a Mesa worksheet.    You will probably not need to sub-
class this object in order to effectively communicate with Mesa.    MesaListen is a
class that listens for and receives information from a MESSAGEIF() function.    You will
need to sub-class MesaListen to all take advantage of its functionality.

MesaListen
The MESSAGEIF() function sends a range of cells to a waiting MesaListen object
running in another program.    For example, let's say we have a spreadsheet that is
being fed gold prices from exchanges around the world (we could easily build this
with the MesaAPI object, and this is similar to the MAPIDemo program.)    We have
built a simple model to identify arbitraging opportunities.    If the price of gold in
Zurich is more than 1% greater than the price of gold in London, we want to be
alerted.    The following formula would be entered into a cell in the worksheet
receiving the gold price updates:
=messageif(zurich_price / 101% > london_price,"buyzurich",zurich_price)

When the price of gold in Zurich was more than 1% higher than the price in London,
a "Mach Message" will be send to a "port" named "buyzurich" containing the

information in the range zurich_price.    To "listen" to that port, simply subclass the
MesaListen class, initialize an object, and when the message is sent, your object will
receive it.    Here's the code:

MyListen.h

@interface MyListen : MesaListen
{

id myWindow;
id priceTextField;

}

- gotMessage:(MAPIValue *)mv num:(int)num forUpperRow:(int)ur upperCol:(int)uc
lowerRow:(int)lr lowerCol:(int)lc;

@end

MyListen.m

@implementation MyListen
- gotMessage:(MAPIValue *)mv num:(int)num forUpperRow:(int)ur upperCol:(int)uc

lowerRow:(int)lr lowerCol:(int)lc
{

[super gotMessage:mv num:num forUpperRow:ur upperCol:uc lowerRow:lr
lowerCol:lc];

[myWindow makeKeyAndOrderFront:self]; // bring application to front

// display the current gold price
[priceTextField setDoubleValue:mv -> values.number];

return self;
}

@end

in your appDidInit: method, instantiate the object:

myListen = [[MyListen alloc] initToPort:"buyzurich"];

and in your appWillTerminate: method, free the object:
[myListen free];

And that's all there is too it.
MesaAPI
The Mesa API object allows you to connect to a worksheet and then perform various
operations on the worksheet.    When you initialize a MesaAPI object, you must
specify a path to a valid Mesa file or initialize to a new worksheet.    If Mesa is not
running, the Workspace Manager is asked to run a copy of Mesa.    If Mesa is loaded
and can open the worksheet, the object is initialized, otherwise a NULL pointer is
returned.
- initToWorksheet:(const char *)ws;
- initToNewWorksheet;

Used instead of the init method.    Connects the object to a worksheet with the
name ws or to a new worksheet (an Untitled worksheet.)    If Mesa cannot be run or
the worksheet cannot be opened, NULL is returned.
- free;

Disconnects the object from the worksheet and frees the object.
- (int)recalc;

Recalculates and re-displays the worksheet.    The worksheet is not recalculated or
re-displayed after information is changed using an API method.    To keep the
information on the worksheet current, you much either re-display or recalculate the
sheet after you have changed it.

- (int)displaySheet;

Re-displays the worksheet.    The worksheet is not recalculated or re-displayed after
information is changed using an API method.    To keep the information on the
worksheet current, you much either re-display or recalculate the sheet after you
have changed it.
- (int)saveSheet;

Saves the worksheet to disk using its current file name.
- (int)saveSheetAs:(const char *)name;

Renames the worksheet and saves it to disk.
- (int)hide;

Hides the Mesa application.
- (int)makeKeyAndOrderFront;

Brings a window in the worksheet to the front of the window list.    If Mesa is not the
active application, it becomes the active application.
- (int)getValues:(MAPIValue **)mv num:(int *)n

upperRow:(int)ur col:(int)uc lowerRow:(int)lr col:(int)lc;

Gets an array of values from the spreadsheet from the range.    Supply the bounding
rows and columns.    The number of items will be placed in *n and the items will be in
an array pointed to by mv.    Each element in the array is in the format:
enum {stringMAPIValue, numberMAPIValue, errorMAPIValue};

typedef struct _MAPIValue {
int type;

short row,col;
union {

char *string;
double number;
int error;
} values;

} MAPIValue;

When you are done with the information, call freeMAPIValue(int n,MAPIValue *mv) to
free the array.
- (int)getValues:(MAPIValue **)mv forLabel:(const char *)l num:(int *)n

upperRow:(int *)ur col:(int *)uc lowerRow:(int *)lr col:(int *)lc;

Gets an array of values from the spreadsheet from the named range.    Supply the
range name.    The number of items will be placed in *n and the items will be in an
array pointed to by mv, and the bounds of the range will be returned in ur, uc, lr,
and lc.    Each element in the array is in the format:

enum {stringMAPIValue, numberMAPIValue, errorMAPIValue};

typedef struct _MAPIValue {
int type;
short row,col;
union {

char *string;
double number;
int error;
} values;

} MAPIValue;

When you are done with the information, call freeMAPIValue(int n,MAPIValue *mv) to
free the array.

- (int)putValues:(MAPIValue *)mv num:(int)n

upperRow:(int)ur col:(int)uc lowerRow:(int)lr col:(int)lc;

Takes a array of values and places it in the worksheet.    mv is the array of values.   
There are n of them.    They are to be placed in the worksheet in the range ur, uc, lr,
and lc.    Mesa removes all cells from that range and then inserts the supplied cells.   
Make sure to set the row and col for each cell.    If a cell is not in the range, it will not
be inserted.
- (int)getLabels:(char ***)lp ranges:(short **)r num:(int *)num;

Gets all the labels for the worksheet.    An example follows:
char **labels;
short *ranges;
int num,x;

if ([myobject getLabels:&label ranges:&ranges num:&num] == MAPISuccess) {
for (x = 0; x < num; x++) {

// print the info
printf("%d. %s upperRow:%d col:%d lowerRow:%d col:%d\n",

x + 1,labels[x],ranges[x * 4],ranges[x * 4 + 1],
ranges[x * 4 + 2], ranges[x * 4 + 3]);

// free the string
free(labels[x]);
}

// free the arrays
free(labels);
free(ranges);
}

Please remember that you must manually free the label strings and the arrays or
else you'll have memory leaks.
- (int)associateLabel:(const char *)l withItems:(char **)it

andValues:(MAPIValue *)mv offset:(int)off numItems:(int)ni orientation:(int)or;

Associates a set of string items with a set of values.    The label is a Mesa named
range defining where the look-up should take place on the worksheet.    Items is an
array of strings containing, for example, stock prices.    The values are values to be
placed at offset rows or columns from the top or left of the matching cell.    There are
ni items in the list and the association will be either horizontalOrientation or
verticalOrientation.    An example of this is used in the MAPIDemo program to pump
stock prices into the Mesa worksheet.

The following three methods get an EPS image for a range of cells or a named graph
in the worksheet.    vp is set to an NXImage object if the message is successful or
NULL if not.    You can use -composite:toPoint: to place the image into a view in your
custom app.    Remember to free the NXImage object after you are done using it
(Mesa allocates the object, it your responsibility to free it.)
- (int)getEPSForLabel:(char *)l in:(id *)vp;
- (int)getEPSForUpperRow:(int)ur col:(int)uc lowerRow:(int)lr col:(int)lc in:(id
*)vp;
- (int)getEPSForGraph:(char *)l in:(id *)vp;

This method prints a named report from Mesa.    You must create the named report
first.    This is useful to create a good looking report, have the custom app place
report data into the worksheet and then print it out.
- (int)printReport:(char *)r;

Additional function:
void freeMAPIValue(int num,MAPIValue *mv);

This function frees the memory allocated for returned values from a message to
getValues:num:upperRow:col:lowerRow:col: or

getValues:forLabel:num:upperRow:col:lowerRow:col:. After you are done with the
information generated by these methods, call this function with the number of items
returned and the array that they were placed in.    Please remember to do this to
avoid nasty memory leaks.

Errors:
MAPISuccess - the operation was successful

MAPISendError - the message could not be sent to Mesa.    The application was
probably terminated

MAPIReceiveError - no answer was received in 30 seconds.    The application may have
crashed or is very busy.

MAPILabelNotFoundError - the named range was not found in the range look-up table.

MAPISheetClosedError - the sheet was closed and the link should be shut down.

MAPINotImplError - this method is currently not implemented.

This is an impassioned plea:    Please, please, please, use
only the functions and methods documented.    These are
the only ones that will be supported in the future.    If you
need functionality that is not provided, please send e-mail
or call.    The last thing any of us need is a program that
doesn't work at all because it took advantage of an
undocumented feature!!

